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Abstract: We further develop on the study of the conditions for the existence of locally

stable non-supersymmetric vacua with vanishing cosmological constant in supergravity

models involving only chiral superfields. Starting from the two necessary conditions for

flatness and stability derived in a previous paper (which involve the Kähler metric and its

Riemann tensor contracted with the supersymmetry breaking auxiliary fields) we show that

the implications of these constraints can be worked out exactly not only for factorizable

scalar manifolds, but also for symmetric coset manifolds. In both cases, the conditions

imply a strong restriction on the Kähler geometry and constrain the vector of auxiliary

fields defining the Goldstino direction to lie in a certain cone. We then apply these results

to the various homogeneous coset manifolds spanned by the moduli and untwisted matter

fields arising in string compactifications, and discuss their implications. Finally, we also

discuss what can be said for completely arbitrary scalar manifolds, and derive in this more

general case some explicit but weaker restrictions on the Kähler geometry.
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1. Introduction

Supergravity theories represent one of the phenomenologically most promising class of su-

persymmetric extensions of the standard model [1, 2]. They are also very well motivated

at the theoretical level, since they can emerge as low-energy effective theories of string

models. Furthermore, the moduli fields arising in string compactifications to four dimen-

sions seem to be natural candidates to constitute the hidden sector that is supposed to be

responsible for supersymmetry breaking [3, 4]. From a phenomenological point of view,

this type of models must however posses some characteristics in order to be viable: su-

persymmetry must be broken, the cosmological constant should be tiny, and all the extra

moduli fields of the hidden sector should be stabilized with a sufficiently large mass. In the

low energy effective theory all these crucial features are controlled by a single quantity, the

four-dimensional scalar potential, which gives information on the dynamics of the moduli

fields, on how supersymmetry is broken and on the value of the cosmological constant. The

characterization of the conditions under which a supersymmetry-breaking stationary point

of the scalar potential satisfies simultaneously the flatness condition (vanishing of the cos-

mological constant) and the stability condition (the stationary point is indeed a minimum)

is therefore very relevant in the search of phenomenologically viable string models.
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Recently, some substantial progress has been achieved in the search of these non-

supersymmetric Minkowski/dS vacua in the context of string/M-theory compactifications.

This was mainly related to the understanding of the superpotentials generated by back-

ground fluxes [5] and by non-perturbative effects like gaugino condensation [6], which

suggested then new interesting possibilities for model building, like in particular those pro-

posed in refs. [7, 8]. On the other hand, it is interesting to note that the structure of

the Kähler potential is usually fixed by the symmetries of the compactification, whereas

the form of the superpotential is more difficult to characterize. Therefore any information

allowing for a discrimination among compactifications with different Kähler potentials,

independently of the form of the superpotential, is extremely valuable. One could then

hope to eventually combine all these sources of information to try to identify a hopefully

restricted set of phenomenologically viable models.

In this respect it was shown by the authors in ref. [9] that, in models involving an arbi-

trary number of chiral multiplets but no vector multiplets, it is possible to derive two very

simple and strong conditions for the existence of flat and stable vacua, which are necessary

but in general not sufficient. These conditions involve the Kähler metric and its Riemann

tensor as well as the vector of auxiliary fields controlling the direction of supersymmetry

breaking. One can then imagine a situation with a fixed Kähler potential and an arbitrary

superpotential and study the space of solutions admitted by these constraints by scanning

over all the possible values of the vector of auxiliary fields satisfying the restrictions with a

fixed Kähler metric and Riemann tensor. This constrains the Kähler geometry of the scalar

manifold. Explicit expressions for these constraints were derived in [9] in the case where

the Kähler manifold spanned by the scalar fields is a factorizable space. In that case, the

resulting conditions restrict the Kähler curvature scalars associated to each of the scalar

fields and the ratios of the supersymmetry-breaking auxiliary fields defining the Goldstino

direction. These results were then applied to the dynamics of moduli fields arising in some

string compactifications.

The aim of this paper is to further develop on the study initiated in [9] and analyze in

more generality the implications that the flatness and stability constraints have on theories

with more general scalar manifolds. We will study in detail the class of theories where the

scalar manifold is not factorizable but has instead the special feature of being symmetric,

as is the case for instance for the coset spaces that are relevant for string models. Actually

in this case of symmetric manifolds it is possible to derive, as in the case of factorizable

manifolds, very simple and strong constraints. We will also study what can be said in the

general case where the scalar manifold is completely arbitrary.

The paper is organized as follows: In section 2 we review the derivation of the neces-

sary conditions for flatness and stability of ref. [9], which represent the starting point of our

analysis. In section 3 we examine what kind of implications can be extracted from these

constraints for completely general scalar manifolds. In sections 4 and 5 we study instead

the special cases of factorizable and symmetric scalar manifolds, where more specific in-

formation restricting the Kähler geometry can be obtained and we also derive the bounds

on the values that the auxiliary fields can take. In section 6 we apply our results to the

particularly interesting case of homogeneous coset spaces arising in the moduli sector of
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string compactifications. In section 7 we also comment on the implications of our results for

supersymmetric Randall-Sundrum models. Finally in section 8 we summarize our results.

2. Conditions for flat and stable vacua

The Lagrangian of a minimal four-dimensional supergravity theory with N chiral super-

fields is entirely specified, at the leading two-derivative order, by a single arbitrary real

function G depending on the corresponding chiral superfields Φi and their conjugates Φ†i ,
as well as on its derivatives [10]. The function G is the following Kähler invariant combina-

tion of the real Kähler potential K and the holomorphic superpotential W (we use Planck

units MP = 1):

G(Φi,Φ
†
i ) = K(Φi,Φ

†
i ) + logW (Φi) + log W̄ (Φ†i ) . (2.1)

Mixed holomorphic and antiholomorphic derivatives of G depend only on the Kähler po-

tential K and define the Kähler geometry of the manifold parametrized by the scalar fields,

whose metric is given by gij̄ = Gij̄. Purely holomorphic or antiholomorphic derivatives of

G depend instead also on the superpotential W , and control the way supersymmetry is

broken. The auxiliary fields F i of the chiral multiplets are determined by their equations

of motion to have the values F i = eG/2Gi. The potential for the scalar fields φi takes then

the following simple form:

V = eG
(
GiGi − 3

)
. (2.2)

In order to study the existence of non-supersymmetric Minkowski minima in a poten-

tial of the type (2.2) one should first check under which conditions this potential has a

stationary point with vanishing cosmological constant. The flatness condition of vanishing

cosmological constant implies that V = 0 at the minimum, implying:

gij̄G
iGj̄ = 3 . (2.3)

The stationarity condition implies instead that ∇iV = 0 at the vacuum, which leads to the

following equations:

Gi +Gk∇iGk = 0 , (2.4)

where ∇i denotes the covariant derivative on the Kähler manifold, which when applied to

Gi gives ∇iGk = gik −Gijl̄Gl̄.
Finally, to ensure the stability of the stationary point, one should check that the matrix

of second derivatives of the potential is positive definite.1 This matrix can be also computed

using covariant derivatives, since the extra connection terms vanish by the flatness and

stationarity conditions. There are two different n-dimensional blocks, Vij̄ = ∇i∇j̄V and

Vij = ∇i∇jV , and after a straightforward computation (see also ref. [12, 13]) these are

1Notice that we require that the cosmological constant should be tunable to zero order by order in

perturbation theory, and that there should not be any flat direction. Models of the no-scale type [11] are

thus excluded from our analysis.
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found to be given by the following expressions:

Vij̄ = eG
(
gij̄ +∇iGk∇j̄Gk −Rij̄pq̄GpGq̄

)
,

Vij = eG
(
∇iGj +∇jGi +

1

2
Gk
{
∇i,∇j

}
Gk

)
,

(2.5)

where Rij̄pq̄ denotes the Riemann tensor on the Kähler manifold, whose components are

given by Rij̄pq̄ = Gij̄pq̄ − gkl̄Gipl̄Gj̄q̄k.

The full 2n-dimensional matrix of second derivatives at the stationary point has the

form:

VIJ =

(
Vij̄ Vij

Vīj̄ Vīj

)
. (2.6)

The conditions under which this 2N -dimensional matrix is positive definite are difficult to

work out in general 2, the only way being to study in full detail the behavior of all the

2N eigenvalues. However, it was shown in [9] that it is possible to deduce some simple

necessary conditions for the matrix (2.6) to be positive definite. This is done by using the

property that if a matrix is positive definite then all its upper-left submatrices are also

positive definite. This implies, for instance, that the N -dimensional submatrix Vij̄ should

be positive definite. In particular along the direction in the scalar field space defined by

Gi 3 one must therefore have Vij̄G
iḠj̄ > 0. It is straightforward to show that, using the

flatness and stationarity conditions as well as the results (2.5), this leads to the extremely

simple necessary conditions for stability 4:

Rij̄pq̄G
iGj̄GpGq̄ < 6 . (2.7)

Equations (2.3) and (2.7) represent simple and very strong constraints that should

be fulfilled by any theory for the existence of non-supersymmetric vacua that are flat

and stable. It is important to realize that the metric gij̄ and the curvature tensor Rij̄pq̄
depend only on the Kähler potential and therefore on the geometry. On the other hand, the

quantities Gi depend also on the superpotential and define the way in which supersymmetry

is broken, since they are related to the auxiliary fields by the relation Gi = F i/m3/2, where

m3/2 = eG/2. One can then imagine a situation with a fixed Kähler potential and an

arbitrary superpotential. More precisely, one can treat gij̄ and Rij̄pq̄ as fixed quantities and

scan over all the possible values of Gi satisfying the restriction (2.3) and the bound (2.7).

It is then clear that eq. (2.7) puts constraints on the values that the various Gi can take,

and actually requiring eq. (2.7) to have a solution also requires that gij̄ and Rij̄pq̄ satisfy

certain conditions.

Notice that the two conditions (2.3) and (2.7) are evaluated at a specific stationary

point, determined by the equations (2.4). It is then very convenient to switch to normal

2See ref. [14] for an attempt in this direction for string models with fluxes.
3Notice that in the fermion field space the direction defined by Gi identifies the would-be Goldstino that

is absorbed by the gravitino field through the super-Higgs mechanism when supersymmetry is broken.
4This condition can be easily generalized to the case in which a positive cosmological constant is required,

with V = eG ε at the vacuum. One finds in that case Rij̄pq̄ G
iGj̄GpGq̄ < 6 + 2ε.
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coordinates around the point under consideration. This can be done by introducing the

vielbein eJi and its inverse ejI , defined in the usual way to diagonalize the metric and its

inverse: gij̄ = eRi e
S̄
j̄ δRS̄ , and gij̄ = eiRe

j̄
S̄
δRS̄ (in what follows we will use capital letters

to denote flat indices). The flatness and stability conditions (2.3) and (2.7) can then

be rewritten in terms of the metric δIJ̄ = erIe
s̄
J̄
grs̄ and the Riemann tensor RIJ̄P Q̄ =

erIe
s̄
J̄
etP e

ū
Q̄
Rrs̄tū in these coordinate, and in terms of the corresponding new variables GI =

eIrG
r:

δIJ̄ G
IGJ̄ = 3 ,

RIJ̄P Q̄G
IGJ̄GPGQ̄ < 6 .

(2.8)

These expressions will be our starting point. They clearly represent a constraint on the

curvature evaluated at the given stationary point and on the direction of supersymmetry

breaking. The strength and the simplicity of these constraint depend on the type of scalar

manifold. In particular, it is clear that for homogeneous manifolds with constant curvature

they will translate into very direct constraints on the parameters of the theory.

Unfortunately, as the conditions (2.8) are quadratic and quartic in the variables Gi,

is not possible in general to solve such conditions exactly. To derive explicit results one

must either further simplify the conditions to get a new set of weaker but still necessary

conditions that can be solved exactly, or consider special types of geometries for which the

problem simplifies from a complicated quartic problem to an exactly solvable quadratic

problem. We will explore what can be said using both different options in the following

sections.

3. General scalar manifolds

In this section we want to explore the possibility to use the conditions (2.8) to find a

restriction on the Kähler geometry in a totally generic case where the manifold spanned

by the scalar fields is an arbitrary Kähler manifold. In order to do that the key is to try to

reduce the problem from a quartic one to a quadratic one by defining new variables that are

quadratic in the N complex quantities Gi. In doing so we will unavoidably introduce new

constraints, which keep the difficulty of the problem intact. However, we can then take the

option of discarding the new constraints and solving the weaker set of conditions exactly to

obtain a general but weaker necessary condition. There are actually two different possible

ways to do this, which lead to different conditions.

A first possibility that one can consider to try to solve the conditions (2.8) is to

introduce the N -dimensional positive definite Hermitian matrix of variables

HIJ̄ =
1

3
GIGJ̄ . (3.1)

Clearly, this does not represent a regular change of variables in terms of the GI ’s. Indeed,

the N2 real components of HIJ̄ are subject to the following quadratic constraints:

HIJ̄HPQ̄ = HIQ̄HP J̄ . (3.2)

– 5 –



J
H
E
P
0
9
(
2
0
0
6
)
0
0
8

These represent (N − 1)2 independent real constraints, leaving 2N − 1 real independent

variables, which correspond to the N absolute values and the N − 1 relative phases of the

variables GI . The flatness and stability conditions (2.8) can then be rewritten in terms of

the new variables (3.1) as

δIJ̄ H
IJ̄ = 1 , RIJ̄P Q̄H

IJ̄HPQ̄ <
2

3
. (3.3)

This is a constrained minimization problem which can be solved in the standard way using

Lagrange multipliers. The difficulty now is that, in addition to the linear flatness condition,

the variables HIJ̄ are also subject to the quadratic constraints (3.2). The treatment of these

constraints with Lagrange multipliers implies cubic terms in the functional to be minimized,

and therefore the problem cannot be solved exactly. Then, as we already mentioned, the

best we can do is to discard the constraints (3.2) and consider the weaker set of conditions

defined by (3.3) on the variables H IJ̄ .

The problem defined by the eqs. (3.3) can be solved by considering the linear map

HIJ̄ → RJ̄IP Q̄H
PQ̄ on Hermitian tensors. This map acts on the N 2-dimensional vector

space of independent components of the Hermitian tensors H IJ̄ , and can be represented by

a N2 ×N2 matrix. This matrix can then be diagonalized, and this defines N 2 eigenvalues

Rh, with h = 1, 2, . . . , N 2. The corresponding eigenvectors H IJ̄
h satisfy the eigenvalue

equations

RJ̄IP Q̄H
PQ̄
h = RhH

IJ̄
h . (3.4)

It is then clear from (3.4) that if any of the eigenvalues Rh are negative or vanishing,

then the constraints (3.3) admit solutions as long as the variables H IJ̄ are aligned closely

enough to the particular directions associated to the negative or vanishing eigenvalues.

On the other hand, if all the eigenvalues Rh are positive, then the constraints (3.3) can

be minimized straightforwardly using Lagrange multipliers. One finds that they admit

solutions only if the following bound is satisfied:

δIJ̄δPQ̄R−1
IJ̄P Q̄

>
3

2
. (3.5)

A second possibility that one can consider to try to solve the conditions (2.8) is to

introduce the N -dimensional complex symmetric matrix of variables

SIJ =
1

3
GIGJ . (3.6)

Again, this does not represent a regular change of variables with respect to the variables

GI . Indeed, the N(N + 1)/2 complex components of SIJ are subject to the following

quadratic constraints:

SIJSPQ = SIQ SPJ . (3.7)

These represent N(N − 1)/2 independent complex constraints, so that one is left with N

complex independent variables, which are in one to one correspondence with the N complex

variables GI .

– 6 –
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It is clear that, in order to be able to use efficiently this new set of variables, we need to

squared the flatness condition. By doing so, the two flatness and stability conditions (2.8)

can be rewritten as:

δIJ̄ δPQ̄ S
IPSJ̄Q̄ = 1 , RIJ̄P Q̄ S

IPSJ̄Q̄ <
2

3
. (3.8)

This is again a constrained minimization problem that can be faced using Lagrange mul-

tipliers. But again there is the difficulty that, in addition to the flatness constraint, the

variables SIJ are also subject to the quadratic constraints (3.7). As before, the implemen-

tation of these constraints with Lagrange multipliers implies cubic terms in the functional

to be minimized, and therefore the problem cannot be solved exactly either. Once again

the best we can do is to discard the constraints (3.7) and consider the weaker constraints

represented only by the conditions (3.8).

The problem defined by the constraints (3.8) can be solved by considering the linear

map SIJ → RP Q
I J SPQ on complex symmetric tensors. This map acts on the N(N+1)/2-

dimensional vector space of independent components of the complex symmetric tensors S IJ ,

and can be represented by a N(N + 1)/2 ×N(N + 1)/2 matrix. This matrix can then be

diagonalized, and this defines N(N + 1)/2 eigenvalues Rs, with s = 1, 2, . . . , N(N + 1)/2.

The corresponding eigenvectors Ss
IJ satisfy the eigenvalue equations

RP Q
I J SPQs = Rs S

IJ
s . (3.9)

They can be chosen to form an orthonormal and complete basis of the vector space,

with Ss
IJSs′ JI = δss′ and

∑
s Ss

IJSsPQ = δIP δ
J
Q. The Riemann matrix and its in-

verse, whenever it exists, can then be written in the form RP Q
I J =

∑
sRs Ss

IJSsPQ
and R−1 I J

P Q =
∑

sRs
−1Ss

IJSsPQ, and the new variables SIJ can be decomposed as

SIJ =
∑

s Ss V
IJ
s . Using this, the conditions (3.8) can finally be rewritten as

∑
s S

2
s = 1 ,

∑
sRs S

2
s <

2

3
. (3.10)

It is clear that these constraints admit solutions if any of the eigenvalues Rs is negative or

vanishes. If instead all the eigenvalues Rs are positive, then from (3.10) we get that they

have to fulfill the bound:

min
{
Rs
}
<

2

3
. (3.11)

This condition can also be rewritten as:

max
{

eigenvalues
(
R−1 I J

P Q

)}
>

3

2
. (3.12)

The inequalities (3.5) and (3.12) represent two different constraints on the Kähler

curvature that have to be necessarily satisfied in order for the theory to have the chance of

admitting flat and stable non-supersymmetric vacua. They are valid in full generality for

any supergravity theory, with an arbitrary scalar manifold, under the sole assumption that

the effects due to vector multiplets can be neglected. However, as already mentioned, they

contain less information than the original constraints (2.8). To derive stronger conditions
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from (2.8), without any loss of information, it is necessary to consider more specific classes

of scalar manifolds where a more explicit knowledge of the constraints on the variables H IJ̄

and/or SIJ is available. This depends obviously on the details of the model, and therefore

to get such an information one should perform a case by case analysis. We will however

see in the following two sections that stronger constraints emerging directly from (2.8) can

be derived for the two classes of scalar manifolds that are respectively factorizable and

symmetric.

4. Factorizable scalar manifolds

A first situation in which the conditions (2.8) can be solved exactly is when the scalar

manifold is factorizable into a product of one-dimensional submanifolds associated to each

of the fields (this case was already worked out in detail in [9] but for completeness we will

briefly review it here). For factorizable spaces the Kähler potential is separable into a sum

of terms, each of them depending on a single chiral field. The Kähler metric becomes then

diagonal and has only N non-zero elements giī. The Riemann tensor is also completely di-

agonal, and has only N non-vanishing components Riīiī, which are related to the diagonal

components of the metric through the curvature scalars Ri of the one-dimensional sub-

manifolds associated to each of the fields. In flat indices, one finds then that the Riemann

tensor is given by:

RIJ̄P Q̄ =




Ri , if I = J = P = Q ,

0 , otherwise.
. (4.1)

This form of the Riemann tensor implies that both maps on Hermitian and symmetric

tensors introduced in the previous section have vanishing eigenvalues. More precisely, the

map on Hermitian tensors has N non-vanishing eigenvalues given by the curvature scalars

Ri, and N(N − 1) vanishing eigenvalues, so that the condition (3.3) is trivially satisfied.

Similarly, the map on symmetric tensors has N non-vanishing eigenvalues given by the

curvature scalars Ri, and N(N − 1)/2 vanishing eigenvalues, so the condition (3.8) is also

trivially satisfied.

Nevertheless, as was shown in [9], in this case it is possible to derive explicit results

directly from the constraints (2.8), thanks to the particularly simple form (4.1) that the

Riemann tensor takes, and get more restrictive necessary conditions than the one implied

by (3.5) and (3.12). To do so, one needs to introduce the following N real and positive

variables parametrizing the Goldstino direction:

Θi =
1√
3

∣∣GI
∣∣ . (4.2)

The two constraints (2.8) become then

∑
iΘ

2
i = 1 ,

∑
iRi Θ4

i <
2

3
. (4.3)
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These can have solutions only if some of the curvature scalars are negative or vanish, or if

they are all positive but satisfy the following bound:

∑
iR
−1
i >

3

2
. (4.4)

If the restriction (4.4) is satisfied then solutions exist, but only for a limited range of values

for the variables Θi. More precisely, the allowed interval is Θi ∈ [Θ−i ,Θ
+
i ], where:

Θ+
i =





√√√√√√
R−1
i +

√
2

3
R−1
i

(∑
k 6=iR

−1
k

)(∑
kR
−1
k −

3

2

)

(∑
kR
−1
k

) , if R−1
i <

3

2
,

1 , if R−1
i >

3

2
.

Θ−i =





√√√√√√
R−1
i −

√
2

3
R−1
i

(∑
k 6=iR

−1
k

)(∑
kR
−1
k −

3

2

)

(∑
kR
−1
k

) , if
∑

k 6=iR
−1
k <

3

2
,

0 , if
∑

k 6=iR
−1
k >

3

2
.

(4.5)

This also constrains the values that the auxiliary fields can take, since these are given by

|F I | =
√

3 Θim3/2.

5. Symmetric scalar manifolds

Another interesting and relevant case where one can solve the original constraints (2.8)

exactly, is when the Kähler manifold spanned by the scalar fields is a coset group manifold

of the form G/H, where G is the global isometry group and H the local stability group.

In this case the Kähler potential K has a very special form due to the fact that the Kähler

manifold has a large number of Killing vectors. These coset Kähler manifolds have been

classified, and there exist finitely many types of them for each given dimensionality N (see

for example [15]). All of them are Einstein manifolds and, moreover, the metric and the

Riemann tensor are invariant under the global symmetry transformations of the group G,

and their various components are strongly constrained. This simplifies the problem suffi-

ciently much to enable us to solve it exactly. In addition to this fact, these spaces turn out

to have constant curvature, since they are homogeneous. This suggests that the constraints

emerging from the flatness and stability conditions will translate into particularly simple

restrictions on the parameters of the theory. More precisely, the Riemann tensor in flat

coordinates is a constant tensor that can be written in terms of a G-invariant combination

of Kronecker δ-functions that are invariant under the subgroup H:

RIJ̄P Q̄ = combination of δ-functions . (5.1)

– 9 –
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The maps on Hermitian and symmetric tensors defined in section 2 can be easily diago-

nalized in this case. Indeed, the eigentensors of these maps must correspond to irreducible

representations of the group H, and can be obtained by decomposing the tensors H IJ̄ and

SIJ under G→ H.

All the existing Kähler coset manifolds can be studied with the same technique. The

form of the Kähler potential and the Riemann tensor with flat indices for all these spaces

can be found in ref. [15]. Here we shall however restrict to those few spaces that are directly

relevant for the simplest string models.

5.1
SU(1,q+1)

U(1)×SU(q+1)

The simplest class of Kähler coset manifold is the maximally symmetric space of dimension

N = q + 1, with the structure:

M =
SU(1, q + 1)

U(1)× SU(q + 1)
. (5.2)

This manifold is the Kählerian analogue of the sphere in Riemannian geometry. It can

be parametrized by using a vector of complex fields φi, where i = 1, 2, . . . , q + 1, and the

Kähler potential is given by

K = − 2

Rall
ln
(

1−
∑

iΦiΦ
†
i

)
. (5.3)

The Riemann tensor is in this case given by a tensor product of metrics, and in flat

coordinates it has the simple form

RIJ̄P Q̄ =
Rall

2

(
δIJ̄ δPQ̄ + δIQ̄ δP J̄

)
. (5.4)

Let us now see what kind of information we can get by applying the general condi-

tions (3.5) and (3.12) derived in section 3. The map H IJ̄ → RJ̄IP Q̄H
PQ̄ on Hermitian

tensors does not have any vanishing eigenvalue, and can therefore be inverted. One finds

R−1J̄I
P Q̄ = (2/Rall)(δ

I
P δ

J̄
Q̄
− (N−1)−1δIJ̄δPQ̄) and therefore the curvature constraint (3.5)

implies that the overall curvature constant should satisfy Rall < 4/3 (q + 1)/(q + 2). On

the other hand, the map SIJ → RP Q
I J SPQ on symmetric tensors has eigenvalue Rall

with degeneracy (q + 1)(q + 2)/2, so that the condition (3.12) implies the stronger bound

Rall < 2/3.

In this case, however, it is also possible to solve exactly the equations (2.8), and

compare it with the general conditions (3.5) and (3.12). To solve directly (2.8), we define

the new positive and real variable

Θ =
1√
3

√∑
I

∣∣GI
∣∣2 . (5.5)

The the two conditions (2.8) can then be written as

Θ2 = 1 , Rall Θ4 <
2

3
. (5.6)

– 10 –



J
H
E
P
0
9
(
2
0
0
6
)
0
0
8

The situation is therefore identical to the one arising in a one-dimensional Kähler manifold

with curvature Rall. The constraint for the existence of non-supersymmetric flat and stable

vacua is then simply

R−1
all >

3

2
. (5.7)

When this is satisfied, there is a unique solution corresponding to Θ = 1. Note that

we get the same result as the one obtained by using the, in principle, less restrictive

condition (3.12). This illustrates the fact that it is possible to get useful information out

of the conditions (3.5) and (3.12).

5.2
SU(p,p+q)

U(1)×SU(p)×SU(p+q)

The next-to-simplest case of Kähler coset manifold is the Grassmanian space of dimension

N = p(p+ q) given by:

M =
SU(p, p+ q)

U(1)× SU(p)× SU(p+ q)
. (5.8)

This is a natural and less symmetric generalization of the previous case, which is recovered

for p = 1. It can be parametrized by a matrix of complex fields φia, where i = 1, 2, . . . , p

and a = 1, 2, . . . , p+ q. The Kähler potential is given by

K = − 2

Rall
ln det

(
δij̄ −

∑
a ΦiaΦ

†
ja

)
. (5.9)

The Riemann tensor is in this case not given by a tensor product of metrics, unless p = 1.

However, its components are nevertheless related in a simple way to those of the metric in

certain coordinate frames. In particular, in flat coordinates one finds the simple expression
5 [15, 16]:

RIA J̄B̄ PC Q̄D̄ =
Rall

2

(
δIJ̄ δPQ̄ δAD̄ δCB̄ + δIQ̄ δP J̄ δAB̄ δCD̄

)
. (5.10)

In this case, the map HIA J̄B̄ → RJ̄B̄ IAPC Q̄D̄H
PC Q̄D̄ is singular and therefore not

invertible, so that the condition (3.5) is trivially satisfied and does not give any constraint.

The map SIAJB → RPC QD
IA JB SPC QD has, on the other hand, eigenvalues Rall with

degeneracy p(p+1)(p+q)(p+q+1)/4 and −Rall with degeneracy p(p−1)(p+q)(p+q−1)/4.

As this map has negative eigenvalues (unless p = 1), the condition (3.12) is also satisfied

and does not give any constraint either.

For these Kähler manifolds, nevertheless, one does find constraints by solving directly

the equations (2.8). To see this, notice that we can rewrite the conditions (2.8) in a

matrix form as tr(GG†) = 3 and Rall tr(GG†GG†) < 6. Observe now that the p× (p + q)

matrix G can be diagonalized by a bi-unitary transformation. More precisely, one can

rewrite G = UGdiagV †, where U ∈ SU(p) and V ∈ SU(p + q), and Gdiag is a p × (p + q)

diagonal matrix with p complex eigenvalues. Note that, using this rewriting in the two

5Note that the expression (5.10) can, also in this case, be rewritten in terms of the metric in flat

coordinates δIA J̄B̄ = δIJ̄δAB̄ , but this decomposition takes a simple tensor product form as in (5.4) only

in the maximally symmetric case corresponding to p = 1.
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conditions (2.8) defining our problem, the matrices U and V always cancel out thanks to

the cyclic property of the trace. Defining then the new p positive and real variables

Θi =
1√
3

∣∣Eigenvaluei(G
IA)
∣∣ , (5.11)

one can finally rewrite (2.8) as:

∑
i Θ

2
i = 1 ,

∑
iRall Θ4

i <
2

3
. (5.12)

The problem takes now exactly the same form as the one for a factorizable scalar manifold

given by the product of p one-dimensional submanifolds all having the same curvature

Ri = Rall. The necessary condition for the existence of non-supersymmetric flat and stable

vacua is then simply:

R−1
all >

3

2p
. (5.13)

If the curvature satisfies the restriction (5.13), then there exist solutions, but only for a

limited range of values for the variables Θi. More precisely, one must have Θi ∈ [Θ−i ,Θ
+
i ]

with:

Θ+
i =





√
1

p
+

√
2

3

p− 1

p

(
R−1

all −
3

2p

)
, if R−1

all <
3

2
,

1 , if R−1
all >

3

2
.

Θ−i =





√
1

p
−
√

2

3

p− 1

p

(
R−1

all −
3

2p

)
, if R−1

all <
3

2(p− 1)
,

0 , if R−1
all >

3

2(p− 1)
.

(5.14)

5.3
SO(2,q+2)

SO(2)×SO(q+2)

Another simple and relevant kind of Kähler coset manifolds are the Grassmanian spaces of

dimension N = q + 2 of the form:

M =
SO(2, q + 2)

SO(2)× SO(q + 2)
. (5.15)

This coset manifold can be parametrized by a vector of complex fields φi, with i =

1, 2, . . . , q + 2, and a Kähler potential given by:

K = − 2

Rall
ln
(

1− 2
∑

iΦiΦ
†
i +

∑
i,j(ΦiΦ

†
j)

2
)
. (5.16)

The Riemann tensor in flat coordinates is in this case found to have the slightly less trivial

form [15]:

RIJ̄P Q̄ =
Rall

2

(
δIJ̄ δPQ̄ + δIQ̄ δP J̄ − δIP δJ̄Q̄

)
. (5.17)
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In this case, the map HIJ̄ → RJ̄IP Q̄H
PQ̄ is singular so that the condition (3.5) is

satisfied and does not give any constraint. The map SIJ → RP Q
I J SPQ has, on the other

hand, eigenvalues Rall with degeneracy (q + 1)(q + 3)/2 and − q Rall/2 with degeneracy 1.

The condition (3.12) is therefore also satisfied and does not give any constraint either.

Nevertheless in this case one can also solve directly the conditions (2.8) in an exact

way. Using a vector notation, one can rewrite the conditions (2.8) as G · G∗ = 3 and

2(G ·G∗)2 − (G ·G)(G∗ ·G∗) < 12/Rall. However now the two conditions depend only on

two independent combinations of the variables. Indeed, introducing the two real positive

variables

Θ1,2 =
1√
6

√
∑

I

∣∣GI
∣∣2 ±

√(∑
I

∣∣GI
∣∣2
)2
−
∣∣∣
∑

I

(
GI
)2∣∣∣

2
, (5.18)

the two conditions can be rewritten as:

Θ2
1 + Θ2

2 = 1 , Rall

(
Θ4

1 + Θ4
2

)
<

2

3
. (5.19)

The problem has now the same form as the one for a factorizable scalar manifold given by

the product of two one-dimensional submanifolds with the same curvature Ri = Rall. The

necessary condition for the existence of non-supersymmetric flat and stable vacua is then:

R−1
all >

3

4
. (5.20)

If the curvature satisfies the restriction (5.20), then there exist solutions, but only for

a limited range of values for the variables Θ1,2. More precisely, one must have Θ1,2 ∈
[Θ−1,2,Θ

+
1,2] with:

Θ+
1,2 =





√
1

2
+

√
1

3

(
R−1

all −
3

4

)
, if R−1

all <
3

2
,

1 , if R−1
all >

3

2
.

Θ−1,2 =





√
1

2
−
√

1

3

(
R−1

all −
3

4

)
, if R−1

all <
3

2
,

0 , if R−1
all >

3

2
.

(5.21)

6. Moduli spaces in string models

Many of the scalar manifolds arising in the moduli sector of string compactifications fall into

the classes of factorizable or symmetric spaces, actually homogeneous coset spaces, that we

have studied in the previous sections. These sectors include the neutral fields controlling the

size of the coupling and the geometry of the compactification manifold, as well as possible

Wilson lines for the hidden gauge group. They represent natural candidates for the hidden

sector in this type of models, and it is therefore of evident interest to apply to these cases
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our results on the conditions under which flat and locally stable non-supersymmetric vacua

can exist.

In the simplest case of orbifold and orientifold compactifications, the untwisted sector

moduli space must be a subgroup of the moduli space emerging for maximally supersym-

metric toroidal reductions, which is uniquely fixed by the fact that there are 6 extra internal

dimensions and by the rank s of the hidden gauge group. More precisely, at leading order

one finds:

M⊂ SU(1, 1)

U(1)
× SO(6, 6 + s)

SO(6)× SO(6 + s)
. (6.1)

The first factor is always present and is associated to the universal dilaton modulus S

controlling the coupling. The second factor is instead broken by the orbifold or orientifold

projection to a subgroup that has the form of a product of coset Kähler manifolds of the

types studied in section 5. It is associated to the Kähler and complex structure moduli T

and U controlling the size and the shape of the compactification manifold, and the Wilson

lines X of the hidden gauge group.

The simplest situation that can appear for a given modulus Φi is described by a Kähler

potential of the form [17]:

K = −ni ln
(

Φi + Φ†i
)
. (6.2)

It is straightforward to show that this potential can be written in the form (5.3), with

Rall = 2/ni, by means of a holomorphic change of variables and a Kähler transformation.

The corresponding Kähler manifold is therefore

M =
SU(1, 1)

U(1)
. (6.3)

In this simplest case, the scalar manifold is both one-dimensional and symmetric, and for

the flatness and stability conditions this corresponds to having one field with curvature

Ri = 2/ni. In the presence of several fields with Kähler potentials of the form (6.2), the

flatness and stability conditions imply
∑

k R
−1
k > 3/2, which requires that

∑
k nk > 3, as

found in ref. [9].

A first relevant generalization involves the Kähler moduli controlling the size of some

cycle in the internal manifold, and is due to the possible presence of Wilson lines around

that cycle. Each modulus Ti can in principle mix with an arbitrary number qi of Wilson

lines Xai , with ai = 1, 2, . . . , qi. The simple one-dimensional space (6.3) is then enhanced

to a (qi + 1)-dimensional space with a Kähler potential given by [18]:

K = −ni ln
(
Ti + T †i −

∑
ai
XaiX

†
ai

)
. (6.4)

This Kähler potential (6.4) can be written in the form (5.3), with Rall = 2/ni, by means of

a holomorphic field redefinition and a Kähler transformation. The corresponding Kähler

manifold is therefore isomorphic to a maximally symmetric coset space of the type studied

in subsection 5.1:

M =
SU(1, qi + 1)

U(1) × SU(qi + 1)
. (6.5)
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Recalling the results of subsection 5.1, we conclude that, as far as the flatness and sta-

bility conditions are concerned, this situation is equivalent to having a single field with

curvature Ri = 2/ni. In the presence of several groups of fields with Kähler potentials

of the form (6.4), the flatness and stability conditions imply then that
∑

k R
−1
k > 3/2,

which requires again that
∑

k nk > 3. Wilson lines do therefore not change qualitatively

the situation. Their presence enhances the minimal geometry in such a symmetric way

that the only effect of the corresponding auxiliary fields is to contribute together with the

involved modulus to the combination of auxiliary fields (5.5) that is relevant to find the

constraints.

Another interesting and relevant generalization can appear for Kähler moduli in par-

ticularly symmetric models, like Z2 or Z3 orbifolds, and is due to the presence of additional

non-standard moduli of this type. More precisely, a set of pr Kähler moduli Tir with equal

parameter nr, where ir = 1, 2, . . . , pr, can mix with pr(pr − 1) extra Kähler moduli Tαr ,

where αr = 1, 2, . . . , pr(pr − 1). There are then in total p2
r Kähler moduli, which can be

organized in a matrix Tirjr , where ir, jr = 1, 2, . . . , pr. The scalar manifold associated to

the original pr moduli, which is a product of pr copies of the minimal space (6.3), is then

enhanced to a p2
r-dimensional space with a Kähler potential given by [19]:

K = −nr ln det
(
Tirjr + T †irjr

)
. (6.6)

One can use a holomorphic field redefinition and a Kähler transformation to rewrite this

Kähler potential in the form (5.9), with Rall = 2/nr, and the corresponding scalar mani-

fold is therefore a particular complex Grassmanian manifold of the type studied in subsec-

tion 5.2:

M =
SU(pr, pr)

U(1)× SU(pr)× SU(pr)
. (6.7)

From the analysis developed in subsection 5.2 we can then conclude that the flatness

and stability conditions depend only on pr independent combinations of fields (5.11) with

identical curvatures Rr = 2/nr. In the presence of several groups of fields with Kähler

potentials of the form (6.6), the flatness and stability conditions imply that
∑

r pr R
−1
r >

3/2, which reduces to the condition
∑

r pr nr > 3. The extra off-diagonal Kähler moduli

are therefore qualitatively irrelevant for the restrictions imposed on the curvature, and

they just combine with the diagonal Kähler moduli into the combinations of fields (5.11)

relevant to find the constraints.

The two deformations that we have considered so far, related to the presence of extra

Wilson lines and off-diagonal Kähler moduli, can also occur simultaneously. In this more

general situation, a set of pr Kähler moduli Tir with equal parameter nr, where ir =

1, 2, . . . , pr, can mix with pr(pr−1) extra Kähler moduli Tαr , where αr = 1, 2, . . . , pr(pr−1),

as well as prqr Wilson lines Xirar , where ar = 1, 2, . . . , qr. There are then p2
r Kähler moduli,

which can be organized in a matrix Tirjr , and in addition prqr Wilson lines Xirar . The

scalar manifold associated to the original pr moduli, which is a product of pr copies of the

minimal space (6.3), is then enhanced to a pr(pr + qr)-dimensional space with a Kähler

potential given by [19]:

K = −nr ln det
(
Tirjr + T †irjr −

∑
ar
XirarX

†
jrak

)
. (6.8)
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This can be shown to be equivalent to a Kähler potential of the form (5.9) with Rall = 2/nr,

and the corresponding Kähler manifold is now the general case of the complex Grassmanian

manifolds studied in subsection 5.2:

M =
SU(pr, pr + qr)

U(1) × SU(pr)× SU(pr + qr)
. (6.9)

As in the previous case we can use the information given in subsection 5.2 to conclude

that the flatness and stability conditions depend only on pr independent combinations

of fields (5.11) with identical curvatures Rr = 2/nr. In the presence of several groups

of fields with Kähler potentials of the form (6.8), the flatness and stability conditions

imply that
∑

r prR
−1
r > 3/2, which requires as in the previous cases that

∑
r pr nr > 3.

This means that neither the extra off-diagonal Kähler moduli nor the extra matter fields

Xirar are relevant for the restrictions imposed on the curvature, and they just combine

with the diagonal Kähler moduli into the combinations of fields (5.11) relevant to find the

constraints.

There is yet another type of interesting enhancement that can appear for Kähler and

complex structure moduli in certain specific models, like Z2×Z2 orbifolds, and which is due

to Wilson lines mixing with these two kinds of fields simultaneously. More precisely, a pair

of two Kähler and complex structure moduli Tr and Ur associated to the same submanifold

and having the same parameter nr can mix with a number qr of Wilson lines Xar , with

ar = 1, 2, . . . , qr, associated to that submanifold. The scalar manifold associated to the

two original moduli, which is a product of two copies of the minimal space (6.3), is then

enhanced to a (qr + 2)-dimensional space with a Kähler potential given by [20]:

K = −nr ln
(

(Tr + T †r )(Ur + U †r )−
∑

ar
(Zar+ Z†ar)

2
)
. (6.10)

In this case, the scalar manifold can be shown to be

M =
SO(2, 2 + qr)

SO(2)× SO(2 + qr)
. (6.11)

This is a Grassmanian coset of the type described in subsection 5.3. We can then conclude

that the flatness and stability conditions depend only on the two independent combinations

of fields (5.18) with identical curvatures Rr = 2/nr. In the presence of several such pairs of

fields with Kähler potentials of the form (6.10), the flatness and stability conditions imply∑
r 2R−1

r > 3/2, which requires that
∑

r 2nr > 3. The presence of the Wilson lines is once

again qualitatively irrelevant, and just changes the relevant combinations (5.18) of fields.

Summarizing we have learned that all the possible enhancements we have considered of

the minimal factorized moduli space given by a product of factors (6.3) do not qualitatively

change the form of the flatness and stability conditions. Due to the very high degree

of symmetry of these enhancements, the only net effect of the extra fields involved is

to change the combinations of fields that are relevant for the conditions. In particular,

they do not change neither the number of relevant combinations nor the values of the

associated curvatures. The curvature constraints for the existence of flat and stable non-

supersymmetric vacua then depend only on the number N of diagonal moduli Φi and their
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associated numerical parameter ni. The problem is thus identical to the one arising in a

N -dimensional factorizable space with constant curvatures given by Ri = 2/ni. In all the

situations analyzed here, the existence of non-supersymmetric flat and stable vacua is then

permitted only if the parameters ni fulfill the condition

∑
k nk > 3 . (6.12)

The only peculiarity of situations where the moduli space is enhanced is that some of the

ni’s have the same values.

In the simplest situations arising in string compactifications, there are seven moduli

fields. These are just the S field, the three Kähler moduli Ti and the three complex structure

moduli Ui which in the simplest situations have diagonal potential of the form (6.2), or

more in general we can have mixtures of these fields with the extra moduli fields enhancing

the Kähler manifold spanned by them. Each of these fields has ni = 1, and this means that

none of them can dominate on its own supersymmetry breaking, as was already pointed

out in ref. [9]. In fact, as can be easily seen from (4.5), the variables Θi have an upper and

a lower bound given by:

Θ±i =

√√√√ni ±
√
ni
(∑

k nk − ni
)(∑

k nk − 3
)

∑
k nk

. (6.13)

This constrains as well the values that the F auxiliary fields associated to each of the

independent combinations of fields can take, which depend both on the diagonal and the

off-diagonal moduli that might be present.

7. Radion in Randall-Sundrum models

The general results we have derived in the previous sections have also interesting im-

plications for phenomenological models with a single extra dimension, like for instance

supersymmetric Randall-Sundrum models with generic warping k [21]. In such models,

the classical effective Kähler potential has a form that is constrained by locality and gen-

eral covariance. Denoting by M5 the 5-dimensional Planck scale, by T the radion chiral

multiplet controlling the size of the extra dimension, and by Xa, a = 1, 2, . . . , q, and X̃ã,

a = 1, 2, . . . , q̃, the matter fields at the two branes, one finds that [22, 23]:

K = − 3 ln

[
M3

5

k

(
1− e−k(T+T †)

)
− 1

3

∑
aX
†
aXa −

1

3

∑
ãX̃
†
ãX̃ã e

−k(T+T †)
]
. (7.1)

It is straightforward to show, by means of a simple rescaling of the fields, that this describes

a (q + q̃ + 1)-dimensional maximally symmetric coset space of the form:

M =
SU(1, q + q̃ + 1)

U(1) × SU(q + q̃ + 1)
. (7.2)

From (7.1) we can read that the curvature is given by Rall = 2/3, and therefore, using the

result given in (5.7), it marginally violates the curvature bound allowing for the existence
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of flat and stable non-supersymmetric vacua. This means in particular that corrections to

the Kähler potential (7.1) will be crucial, since even a slight change on the curvature can

allow it to fulfill the necessary condition (5.7).

This fact has strong implications on models of radius stabilization within this setup.

For instance in the model proposed in ref. [24, 23] the radion superpotential induced by

some gaugino condensation in the bulk is used to stabilize the radion at an AdS point, which

is then uplifted to a Minkowski vacuum thanks to a brane sector. Using our previous result,

we conclude that this model cannot work at leading order if the brane sector sector has a

Kähler potential as in (7.1). To improve the situation one needs to have some non-linearity

in the matter sector (this would reduce the high degree of symmetry of (7.2)), like for

instance a non-trivial field-dependent wave-function factor. This was already suggested in

ref. [25], where it was assumed that such a wave-function would stabilize the brane scalar

fields at vanishing values. The results derived here show that this is actually mandatory

in order for this model to work.

In general, quantum effects induce non-trivial corrections to the tree-level Kähler po-

tential (7.1). These corrections can be either divergent local effects that can be reabsorbed

by a renormalization of the parameters in (7.1), or finite non-local effects that induce,

on the contrary, a correction with a different dependence on the fields (see for instance

refs. [25, 26]). These Casimir-like corrections modify the structure of (7.1), and can there-

fore be potentially useful to lower the effective curvature below the critical value Rall = 2/3

obtained at the classical level.

8. Conclusions

In this paper, we have analyzed in more generality the implications of the flatness and

stability constraints derived in ref. [9] for supergravity theories where only chiral multiplets

are relevant for supersymmetry breaking. We have explored in detail special cases where

the Kähler manifolds spanned by the scalar fields are such that it is possible to work out

in full generality the implications of these constraints. We have studied in particular the

coset Kähler manifolds that are relevant for the moduli sector of string models. Since these

are homogeneous spaces with constant curvature, the implications of the constraints are in

this case particularly simple and directly related to the parameters of the theory. We have

found that the conditions for the existence of flat and stable non-supersymmetric vacua

impose in these cases strong constraints on the Kähler geometry and also on the values

that the auxiliary fields can take (as was also the case for the examples considered in [9]).

We were able to show that the basic symmetry enhancements due to the addition of extra

off-diagonal and/or untwisted matter fields that extend the minimal space of products

of SU(1, 1)/U(1) factors to more complicated coset manifolds are qualitatively irrelevant

as far as the constraints on the Kähler geometry are concerned. Actually, the additional

fields were found to change only the combinations of auxiliary fields that are relevant for the

constraints, leaving their number and the associated constraints unchanged. We have also

explored the case of completely arbitrary scalar manifolds, for which the original variational

problem defined by the constraints is not exactly solvable. Nevertheless, we were able to
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derive explicit results also in this more general case by further simplifying the conditions

defining the problem in a way that made the new variational problem exactly solvable. In

this way, we were able to obtain weaker but completely general necessary conditions.

There are many avenues of future work following these lines. One of the most interest-

ing is to perform the the same kind of analysis as the one presented here when also vector

multiplets participate to supersymmetry breaking. The presence of vector multiplets with

significant D auxiliary fields, in addition to chiral multiplets with non-vanishing F auxil-

iary fields, can alleviate the restrictions found in ref. [9] and in this paper (where D-terms

where neglected with respect to F -terms) 6. More precisely, some of the vector multiplets

can gauge some isometries of the chiral multiplet sector, and the corresponding D-terms

are then related to the F -terms through the Killing potentials specifying the gauging. The

progress made in the present paper concerning symmetric spaces should be relevant to

study this interesting but more complicated situation more efficiently.
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